首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1831篇
  免费   188篇
  国内免费   148篇
化学   1429篇
晶体学   16篇
力学   99篇
综合类   12篇
数学   154篇
物理学   457篇
  2023年   15篇
  2022年   23篇
  2021年   42篇
  2020年   48篇
  2019年   63篇
  2018年   55篇
  2017年   43篇
  2016年   69篇
  2015年   71篇
  2014年   83篇
  2013年   125篇
  2012年   148篇
  2011年   181篇
  2010年   91篇
  2009年   101篇
  2008年   132篇
  2007年   83篇
  2006年   102篇
  2005年   91篇
  2004年   83篇
  2003年   62篇
  2002年   105篇
  2001年   73篇
  2000年   46篇
  1999年   45篇
  1998年   21篇
  1997年   14篇
  1996年   14篇
  1995年   9篇
  1994年   21篇
  1993年   13篇
  1992年   6篇
  1991年   10篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   3篇
  1982年   5篇
  1981年   7篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1973年   3篇
  1967年   1篇
  1957年   2篇
  1956年   1篇
排序方式: 共有2167条查询结果,搜索用时 24 毫秒
91.
The photoactivity of CdS nanorods was greatly improved by amino functionalized accordion-like MXene and spherical ZnSnO3. MXene possesses good electron transfer capability and ZnSnO3 presents matched energy band with CdS, which deeply accelerate the electron transfer and prevent the recombination of photogenerated electron-hole pair, leading to a strong photoelectrochemical (PEC) response. Taking the merit of the improved photoactivity of CdS nanorods, a novel PEC biosensor was constructed for DNA hydromethylation detection based on immune recognition of target molecule, where 5-hydroxymethyl-2′-deoxycytidine triphosphate (5hmdCTP) was employed as detect target, CdS/MXene was used as photoactive material, and ZnSnO3 was adopted as signal amplification unit. Under enzymatic covalent reaction of –CH2OH of 5hmdCTP with –NH2 of MXene, 5hmdCTP was specifically recognized and captured. Then, taking advantages of the covalent reaction between phosphate group of 5hmdCTP and ZnSnO3, the signal amplification unit was captured. Under the optimum conditions, this PEC biosensor presents wide linear range of 0.008–100 nM and low detection limit of 4.21 pM (3σ). The applicability of the developed method was evaluated by investigating the effect of Cd2+ and perfluorohexane compound pollutant on 5-hydroxymethylcytosine content in the genomic DNA of the roots and leaves of wheat seedlings.  相似文献   
92.
Nanomaterials with localized surface plasmon resonance (LSPR) locating in the near-infrared region have broad application prospects in the field of biomedicine. However, the biggest problem that limits the biomedical application of such nanomaterials lies in two aspects: First, the potential long-term in vivo toxicity caused by the metabolism of many nanomaterials with LSPR effect; Second, most of current nanomaterials with LSPR effect are difficult to achieve LSPR wavelength tunability in the near-infrared region to adapt to different biomedical applications. Copper selenide nanomaterials are composed of selenium and copper, which are necessary nutrient elements for human life. Because of the active and flexible chemical properties of selenium and copper, copper selenide nanomaterials can not only be effectively degraded and utilized in human body, but also be endowed with various physicochemical properties by chemical modification or doping. Recently, copper selenide nanomaterials have shown unique properties such as LSPR in the near-infrared region, making them attractive for near-infrared thermal ablation, photoacoustic imaging, disease marker detection, multimode imaging, and so on. Currently, to the best of our knowledge, there is no review on the LSPR properties of copper selenide nanomaterials and its biomedical applications. This review first discusses the relationship between the physicochemical properties and the LSPR of copper selenide nanomaterials and then summarizes the latest progress in the application of copper selenide nanomaterials in biological detection, diagnosis, and treatment of diseases. In addition, the advantages, and prospects of copper selenide nanomaterials in biomedicine are also highlighted.  相似文献   
93.
The cross section for e+ e- --> pi+ pi- psi(2S) between threshold and sqrt[s]=5.5 GeV is measured using 673 fb(-1) of data on and off the Upsilon(4S) resonance collected with the Belle detector at KEKB. Two resonant structures are observed in the pi+ pi- psi(2S) invariant-mass distribution, one at 4361 +/- 9 +/- 9 MeV/c2 with a width of 74 +/- 15 +/- 10 MeV/c2, and another at 4664 +/- 11 +/- 5 MeV/c2 with a width of 48 +/- 15 +/- 3 MeV/c2, if the mass spectrum is parametrized with the coherent sum of two Breit-Wigner functions. These values do not match those of any of the known charmonium states.  相似文献   
94.
95.
A direct Pd‐catalyzed C? H functionalization of benzoquinone (BQ) can be controlled to give either mono‐ or disubstituted BQ, including the installation of two different groups in a one‐pot procedure. BQ can now be directly functionalized with aryl, heteroaryl, cycloalkyl, and cycloalkene groups and, moreover, the reaction is conducted in environmentally benign water or acetone as solvents.  相似文献   
96.
The paper reports the development of cement clinker-supported nickel (with metal loadings of 5 wt%, 10 wt%, 15 wt% and 20 wt%) catalysts for glycerol dry (CO2) reforming reaction. XRF results showed that CaO constituted 62.0% of cement clinker. The physicochemical characterization of the catalysts revealed 32-folds increment of BET surface area (SBET) with the addition of nickel metal into the cement clinker, which was also corroborated by FESEM images. Significantly, XRD results suggested different types of Ni oxides formation with Ni loading, whilst Ca3SiO5 and Ca2Al0.67Mn0.33FeO5 were the main crystallite species for pure cement clinker. Temperature-programmed reduction analysis yielded three domains of H2 reduction peaks, viz. centered at approximately 750 K referred to as type-Ⅰ peaks, another peaks at 820 K denoted as type-Ⅱ peaks and the highest reduction peaks, type-Ⅲ recorded at above 1000 K. 20 wt% Ni was found to be the best loading with the highest XG and H2 yield, whilst the lowest methanation activity. Syngas with lower H2/CO ratios (0.6 to 1.5) were readily produced from glycerol dry reforming at CO2-to-Glycerol feed ratio (CGR) of unity. Nonetheless, carbon deposit comprised of whisker type (Cv) and graphitic-like type (Cc) species were found to be in majority on 20 wt%Ni/CC catalysts.  相似文献   
97.
New 6-(pyrazol-1-yl)pyrazolo[3,4-b]pyridin-3-ol compounds were synthesized by cyclization reaction from 2,6-dichloro-4-methylnicotinonitrile. Their derivatives exist as the 3-hydroxy tautomer. The structure of the compound 1a of one of the resulting compounds was studied in detail by X-ray diffraction.  相似文献   
98.
建立了强化食品(饮料、奶粉、含乳饮料、大米、果泥及果冻)中维生素C含量的高效液相色谱检测方法。优化了样品处理方法,在水浴控温和避光条件下处理样品,避免维生素C被氧化。选用Tech Mate C18–ST(250 mm×4.6 mm,5μm)反相色谱柱,以0.05 mol/L磷酸二氢钾缓冲溶液(p H 3)为流动相,流量为1.0m L/min,检测器为光电二极管阵列检测器,检测波长为266 nm。线性范围为0.2~100μg/m L,相关系数为0.999 6,果泥中维生素C的定量限为20 mg/kg,其它为100 mg/kg,加标回收率为82.2%~107%,测定结果的相对标准偏差为1.23%~6.86%(n=8)。该方法简单快速,其灵敏度、准确度和精密度均能满足强化食品中维生素C的检测要求。  相似文献   
99.
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10?5 S cm?1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g?1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   
100.
A surface‐enhanced Raman scattering‐chiral anisotropy (SERS‐ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS‐ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号